The New York Times is looking to machine learning to help it understand reader behavior


Chris Wiggins, a theoretical physicist and mathematician who is the chief data scientist for the New York Times, says he is trying to help the paper detect patterns in the data about user behavior so that it can make better decisions about the product.

Source: gigaom.com

One of the things that machine learning and data analysis can do, he said, is search through large datasets about user behavior in order to detect patterns that might indicate which direction the editorial or business side should take a particular product, whether it’s a web offering or a mobile app. Instead of deciding which features need to be focused on in advance, Wiggins added, “we can rely on the data to reveal which features we should be paying attention to,” because of the correlations in those patterns

Advertisements
Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: